浙江帕瓦新能源股份有限公司

1 本年度报告摘要来自年度报告全文,为全面了解本公司的经营成果、财务状况及未来发展规划,投资者应当到网站仔细阅读年度报告全文。

公司已在本报告中描述可能存在的风险,敬请查阅本报告“第三节管理层讨论与分析”之“四、风险因素”部分,敬请投资者注意投资风险。

3 本公司董事会、监事会及董事、监事、高级管理人员保证年度报告内容的真实性、准确性、完整性,不存在虚假记载、误导性陈述或重大遗漏,并承担个别和连带的法律责任。

5 天健会计师事务所(特殊普通合伙)为本公司出具了标准无保留意见的审计报告。

经天健会计师事务所(特殊普通合伙)审计,截至2022年12月31日,公司期末可供分配利润为人民币31,739.08万元。经董事会决议,公司2022年度利润分配及资本公积转增股本预案为:拟以实施权益分派股权登记日登记的总股本为基数,拟向全体股东每10股派发现金红利3.3元(含税)。截至2022年12月31日,公司总股本13,437.8228万股,以此计算合计拟派发现金红利4434.48万元(含税),占公司2022年度合并报表归属于上市公司股东净利润的30.41%。拟向全体股东每10股以公积金转增2股,截至2022年12月31日,公司总股本13,437.8228万股,本次转股后,公司的总股本为16,125.3874万股(最终以中国证券登记结算有限责任公司上海分公司登记结果为准)。

本次利润分配及资本公积转增股本预案已经第三届董事会第五次会议审议通过,尚需提交公司2022年度股东大会审议。

公司主要从事锂离子电池三元正极材料前驱体的研发、生产和销售,专注于单晶型中高镍NCM三元前驱体这一细分市场,是国内先进的三元前驱体生产商。公司主要产品为锂离子电池NCM三元正极材料前驱体,主要应用于镍钴锰三元正极材料的制造,并继而作为锂离子电池关键原料用于锂离子电池的生产,最终应用于新能源汽车动力电池、消费电子、电动工具等领域。

根据中国证监会《上市公司行业分类指引》公司所属行业为“C39-计算机、通信和其他电子设备制造业”。

基于客户产品需求、产品发展方向和前沿科学探索,公司秉持“生产一代,研发一代,储备一代”的研发理念,公司建立了基础研发、小试研发、中试研发的研发体系。

基础研发是公司研发体系可持续发展的源泉和动力,为公司具体研发项目指出方向。在基础研发层面,公司研发团队基于对锂电基础材料的深刻理解,把握最新科研热点,对基础材料进行前沿科学探索,形成潜在产品技术储备。

公司在基础研发领域与中南大学等在冶金、电池材料方面具有学科带头性的高等科研机构建立了持续良好的合作研发关系。通过合作研发和产学研交流,公司可以及时把握科研前沿方向,引入高校科研资源,实现基础科学和产业落地的互补。

小试研发是公司基础研发成果向具体产品转化的第一个步骤。针对基础研发结果,公司研发团队对预期应用产品、预期生产工艺等进行初步判断,并进行初步的验证试验。小试研发成果成为公司导入下游客户供应链的基础。

中试研发是公司经小试初步验证后潜在产品进入成果转化的重要步骤。在此阶段,公司与正极材料客户进行持续性技术交流。公司基于客户对产品性能提升与成本降低的诉求,凭借对三元前驱体技术的掌握,不同程度地参与到客户下一代产品的研发过程,并根据客户实际需求进行产品设计和研发投入,保证在研发协同、成果转化方面的独特优势。公司基于中试阶段的研发成果,对在研产品进行工艺放大研究,进行设备自主研发设计、工艺流程优化改造,推动下一代产品生产效率和产品品质的提升。

公司采购的原材料主要为硫酸钴、硫酸镍、硫酸锰等各类合成三元前驱体所需的原料。

公司结合销售订单、生产计划、原材料市场价格波动、运输周期等因素,一般采取“安全库存+适当备货”的采购模式。硫酸镍、硫酸钴、硫酸锰在上海有色金属网存在公开市场报价,公司采购时基于公开市场参考价格、付款条件等因素,向供应商进行询价、议价,在保证原材料品质的同时尽量降低采购成本。

为了满足向客户及时供货的需求,公司采用“以销定产+适度备货”的生产模式,根据销售计划、客户订单、发货计划及生产排期、市场预测、年度预算,结合产能和库存的实际情况,制定生产计划。

出于降低采购成本和拓宽原料来源的考量,在金属盐类原料常规采购之外,公司亦少量采用委托加工模式,即公司直接采购金属原料,委托有资质的加工企业将金属原料加工为金属盐后作为生产原料,金额及占比较小。

公司产品采取直销模式,客户主要为大型、知名的锂离子电池正极材料制造商。公司产品销售价格由“主要原料成本+加工费”的模式构成。其中,主要原料成本的计价基础主要为各类金属盐材料的市场价格,同时公司考虑前期采购入库的原材料价格,与客户协商确定;加工费则根据产品制造成本、预期利润及议价能力等因素协商确定。

2022年,全球动力电池装机量中,三元和磷酸铁锂仍是主流的正极路线,磷酸锰铁锂及钠电正极材料初露锋芒。其中,磷酸铁锂受益于成本较低、安全性较好的特点及未来储能市场空间的打开,发展势头较为强劲,但因已接近理论能量密度的上限,依然不会是高端动力电池的选择;三元正极材料受制于贵重金属价格的高企,及低端产品被磷酸锰铁锂迭代的可能,渗透率提升速度趋缓,但适配于长续航新能源汽车的中高端材料,市场地位依然稳固。三元正极材料领域,除了高镍化这一传统发展方向,高电压化的趋势逐渐异军突起,被市场看好。由于多晶材料在高电压下容易产生微裂纹,不适合高电压,单晶材料在结构稳定性上的差异化优势正在得到显现,未来单晶、高镍、高电压三元正极材料具有更为广阔的发展前景。

从晶体结构上看,单晶三元正极材料为一次颗粒,粒径约几微米,呈现单分散状态,而多晶三元正极材料则是若干直径约几百纳米的一次颗粒团聚而形成的直径约十微米的二次球,相对而言更为杂乱、不均匀。

多晶三元正极材料由许多纳米级小颗粒构成,在循环过程中,由于颗粒不断膨胀收缩,容易导致材料开裂、破碎,进而致使电池循环寿命缩短。同时,由于晶体颗粒之间的连接较为脆弱,在极片冷压过程中,容易导致颗粒破碎,引起电池性能恶化。单晶三元正极材料在压实和高温循环过程中,不易发生破碎,具有更好的结构稳定性和耐高温性能。

因此,多晶三元正极材料在高电压下充放电,容易产生晶粒间微裂纹。微裂纹的产生会导致正极材料晶体结构稳定性变差,同时电解液进入微裂纹会加剧电解液在正极材料表面发生副反应,使得多晶三元正极材料在高电压下的稳定性和循环性较差,不适合高电压。而单晶三元正极材料由于内部结构密实,在高电压下反复充放电后,不易产生晶粒间微裂纹,可有效抑制因微裂纹产生的副作用,具有稳定性较好、循环寿命较长的优势,更适合高电压的使用,可沿着高镍、高电压两个维度双轮迭。

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注